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Any system containing at least one positive Lyapunov exponent is defined to
be chaotic and the system dynamics become unpredictable. For a mechanical
system, the sum of Lyapunov exponents is negative and related to the damping,
and so can be utilised to monitor any changes of the damping mechanism.
However, in order to track any changes the data segment used to compute the
Lyapunov exponents must be short. This leads to problems since Lyapunov
exponents are calculated from a long term averaged divergence rate. To overcome
this problem, it is described how the sum of Instantaneous Lyapunov exponents
is related to the generalised divergence of the flow and the damping of a
mechanical system. Computer simulations using differential equations are
implemented to demonstrate the significance of the sum of Instantaneous
Lyapunov exponents. In practice, it may be difficult to obtain accurate
Instantaneous Lyapunov exponents from a time series (from experimental data),
and so short term averaged Lyapunov exponents are introduced to overcome this.
The sum of short term averaged Lyapunov exponents is applied to experimental
data to detect evolutionary changes in damping from high to low.
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1. INTRODUCTION

In a dynamical system, the spectrum of Lyapunov exponents plays a very
important role in the diagnosis of whether the system is chaotic or not. The
Lyapunov exponents are a measure of sensitive dependence upon initial conditions
and represent the average rate of divergence or convergence of nearby trajectories
in phase space. A positive Lyapunov exponent means that the nearby trajectories
in phase space will soon diverge and the evolution is sensitive to initial conditions
and the system becomes unpredictable. Any system containing at least one positive
Lyapunov exponent is defined to be chaotic [1]. One of the important properties
is that the sum of Lyapunov exponents is related to the generalised divergence of
the flow in phase space of the system, and related to the energy dissipation
mechanism of a system, i.e., the energy dissipation means phase volume
contraction. In a mechanical system damping is related to the energy dissipation.
Thus the sum of Lyapunov exponents must be related to the damping of a
mechanical system, and can be utilised to monitor any changes of damping of the
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system. However, in order to track the changes of damping of a system the data
segment used to calculate the Lyapunov exponents must be short. This leads to
problems since Lyapunov exponents are calculated from a long term averaged
divergence rate as will be discussed later.

To overcome the above problem, Instantaneous Lyapunov exponents (ILEs) are
introduced which are the derivative of the logarithm of divergence rate. It is
described how the sum of ILEs is related to the generalised divergence of the flow
and to the damping of a mechanical system. Computer simulation results from
differential equations are presented, and experimental results using a double-well
potential vibrator are also presented. The algorithm for computing the Lyapunov
exponents (and the ILEs) from differential equations is based on the use of a phase
space plus tangent space approach suggested by Wolf et al. [2], and on the
algorithm developed by Sano et al. [3] in the case of experimental data (time
series). In practice, it is very difficult to obtain accurate ILEs from a time series
due to computational errors, and so short term averaged Lyapunov exponents
(SLEs) are introduced. A similar concept to the SLEs, the ‘Local Lyapunov
exponents’ was introduced by Abarbanel et al. [4]. However, the approach here
is different, i.e., ‘Local Lyapunov exponents’ are defined in a discrete manner, and
so, strictly speaking, are only relevant for discrete-time dynamical systems. For an
example of the Local Lyapunov exponents for a discrete-time dynamical system,
Lyapunov exponents calculated from the nth interations of the system refer to the
local Lyapunov exponent of order n. For continuous-time dynamical systems, they
defined the Local Lyapunov exponents in the same way using a sampled version
of the system. However, they did not discuss any effects of time-discretisation of
continuous systems. On the other hand, the SLE is the time averaged version of
the ILE, so it is defined in a continuous manner for continuous-time dynamical
systems and is the quantity which varies locally in time. Thus the SLE is very
different from the local Lyapunov exponent in this sense.

In this paper, the generalised divergence of the flow in phase space will be
discussed and the ILEs and SLEs derived in section 2. The relationship between
the damping property of a mechanical system and the generalised divergence of
the flow is discussed in section 3. Computer simulation results using simple
non-linear differential equations (Duffing equation and Van der Pol equation) are
presented in section 4. Experimental results are given in section 5.

2. VOLUME IN A PHASE SPACE AND THE INSTANTANEOUS
LAYAPUNOV EXPONENTS

A continuous-time n-dimensional autonomous dynamical system is modelled by
ordinary differential equations of the form

dx
dt

= f(x1, x2, . . . , xn )=$dx1

dt
dx2

dt
· · ·

dxn

dt %
T

, x(t0)= x0, x(t)$Rn (1)

where x=[x1 x2 · · · xn ]T is a vector in n-dimensional phase space and xi are phase
coordinates. Equation (1) determines the set of solution curves (trajectories or
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flow) in phase space. The vector function f is the generalised velocity vector field
associated with flow. Suppose that the long-term evolution of an infinitesimal
n-dimensional sphere of initial conditions is monitored, the sphere will become an
n-dimensional ellipsoid due to the locally deforming nature of the flow (the flow
is a bundle of trajectories). The ith Lyapunov exponent in the n-dimensional phase
space is defined in terms of the length of the ith principal axis Pi (t) of the ellipsoid
[5]

li =lim
t:a

1
t

ln
Pi (t)
Pi (0)

(2)

where the li are ordered from the largest to the smallest. The Lyapunov exponents
defined in the form of (2) is not very helpful in computation, because it is
impossible to average infinitely. Thus the Lyapunov exponent may be described
by an estimate which becomes a function of time or a function of the number of
iterations. Then equation (2) becomes

li (t)=
1
t

ln
Pi (t)
Pi (0)

. (3)

Similarly, if the system is described by difference equations or a map, then the
Lyapunov exponents are defined in a similar manner to the continuous-time
system as

l
 i (k)=
1
k

ln
Pi (k)
Pi (0)

(4)

where Pi (k) is the length of the ith principal axis, and k is the number of iterations
of the system. In this paper, assuming the estimates of the Lyapunov exponents
are obtained from long-term averaged values, the Lyapunov exponents (li ) usually
mean the estimates of the Lyapunov exponents, so generally the notation in (3)
and (4) will not be used explicitly, unless otherwise stated.

If one of the li is positive, nearby trajectories diverge, and the evolution is
sensitive to initial conditions and is therefore chaotic. However, the divergence of
chaotic trajectories can only be locally exponential, because if the system is
bounded Pi (t) cannot go to infinity. Thus to obtain the Lyapunov exponents, one
must average the local exponential growth over a long time (infinite in theory).
Lyapunov exponents have been defined in terms of the principal axes of an
n-dimensional ellipsoid in an n-dimensional phase space. Similarly, the behaviour
of the volume of the ellipsoid is related to the sum of Lyapunov exponents. The
relative rate of change of a n-dimensional volume V in n-dimensional phase space
under the action of flow is given by the ‘Lie derivative’ (generalised divergence of
the flow) [6, 7].

1
V

dV
dt

= s
n

i=1

1fi

1xi
. (5)
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This relative rate of volume change can also be expressed by the Lyapunov
exponents (li ) [8]

1
V

dV
dt

= s
n

i=1

li . (6)

Thus, the sum of Lyapunov exponents is equal to the generalised divergence of
the flow. However, this is not a rigorous relationship since the Lyapunov
exponents are obtained from the long-term averaged divergence rate [see equation
(2)], whereas the generalised divergence of the flow may continuously change with
the action of the flow (e.g., the Van der Pol equation, which will be shown later).
This may be much more rigorously described by introducing the ILEs. The
divergence rate Pi (t)/Pi (0) in equation (3) is continuous in time. Since the
trajectories obtained from equation (1) are smooth and bounded, the divergence
rate is also smooth and bounded. Thus the divergence rate is differentiable. The
ILE for a continuous-time dynamical system is defined as the derivative of the
logarithm of the divergence rate

ai (t)=
d
dt $ln Pi (t)

Pi (0)%. (7)

Also, the ILE for a discrete-time dynamical system (difference equation) is more
easily defined such that

ai (k)= ln
Pi (k)

Pi (k−1)
(8)

where ai (k) is the ith ILE at the kth iteration of the system, and represents the
divergence rates at each iteration. In this paper, continuous-time dynamical
systems are considered. Unlike the Lyapunov exponent, the ILE represents the
divergence (or convergence) rate at a given time and is a time varying quantity.
So the ILE shows how the divergence (or convergence) rate of nearby trajectories
changes with time. The Lyapunov exponent becomes the time average of the ILE

l
 i (t)=
1
t g

t

0

ai (t1) dt1 (9)

or

l
 i (t)=A[ai (t)] (10)

where A[ ] denotes the time average. Thus, the length of the ith principal axis at
time t can be described by the ILE,

Pi (t)=Pi (0) exp$g
t

0

ai (t1) dt1% (11)
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and the n-dimensional phase volume at time t becomes

V(t)=V(t0) exp$s
n

i=1 g
t

0

ai (t1) dt1%=V(t0) exp0A$s
n

i=1

ai (t1)%t1 (12)

let sn
i=1

ai (t)= s(t) for convenience, i.e., s(t) is the sum of ILEs. Then, equation
(12) becomes

V(t)=V(t0) exp$g
t

0

s(t1) dt1%=V(t0) exp(A[s(t1)]t)

7
1

V(t)
dV(t)

dt
= s(t) (13)

where s(t)=d/dt(A[s(t1)] · t+A[s(t1)]), and A[s(t)]= sn
i=1

l
 i (t). Thus, from
equation (13), the sum of ILEs is equal to the generalised divergence of the flow.
And the sum of ILEs represents the instantaneous behaviour of the generalised
divergence of the flow. The SLE is defined as the short-term average of the ILE,
i.e., ILEs are averaged over a defined window length to calculate the SLEs.

Si (t)=A[ai (t)]t1 + tw
t1 (14)

where tw is the window length. The relationship between the ILE and SLE is
graphically illustrated in Figure 1.

The SLE is introduced especially for the case of experimental data (time series),
because the ILEs obtained from the algorithm (linear approximation of the flow)
based on Sano et al. [3] are subject to ‘numerical’ noise. By assuming that the
numerical noise is uncorrelated, the noise can be reduced by taking an average
(SLEs). The size of window length may depend on the application. For the
particular application presented in this paper, the window length is determined by
trial and error, i.e., striking a balance between the detectability of changes of
damping and numerical errors as will be shown later.

Figure 1. Calculation of SLE from ILE.
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3. GENERALISED DIVERGENCE OF THE FLOW AND THE DAMPING
PROPERTY OF A MECHANICAL SYSTEM

The equation of motion of a linear multi-degree of freedom system can be
written as

Mẍ+Cẋ+Kx= f(t) (15)

where M is the diagonal mass matrix, C and K are the damping matrix and stiffness
matrix, and x and f(t) are n-dimensional vectors. If the system is described in
2n-dimensional non-autonomous phase space, by letting p= x and q= ẋ, the
equations of motion may be written as

dp
dt

= q= f1(p1, . . . , pn , . . . , qn , t)

dq
dt

=M−1f(t)−M−1Cq−M−1Kp= f2(p1, . . . , pn , q1, . . . , qn , t) (16)

where f1 = (f1, . . . , fn ) and f2 = (fn+1, . . . , f2n ). Since the mass matrix is diagonal,
the generalised divergence of the flow becomes

s
n

k=1

1fk

1pk
+ s

2n

k= n+1

1fk

1qk
=−trace(M−1C). (17)

This can be interpreted as the total damping of the system. As a result, in a linear
system, the generalised divergence of the flow is independent of the external force
(assuming that the external forces are harmonic) and the restoring force, and thus
represents the viscous damping property of the system. If a single degree of
freedom system is considered, the generalised divergence of the flow becomes
−c/m, where c is damping coefficient and m is mass.

For some non-linear systems, the generalised divergence of the flow may change
continuously. Note that equation (17) does not hold for non-linear systems since
the damping matrix C and stiffness matrix K may be functions of p and q, and
the partial derivatives in (17) depend on the non-linearities of the system. The
equation of motion of a class of non-linear multi-degree of freedom system may
be written as

Mẍ+C(x, ẋ)ẋ+K(x, ẋ)x= f(t). (18)

By letting p= x and q= ẋ, the equations of motion may be written as

dp
dt

= q= f1(p1, . . . , pn , q1, . . . , qn , t)

dq
dt

=M−1f(t)−M−1C(p, q)q−M−1K(p, q)p= f2(p1, . . . , pn , q1, . . . , qn , t).

(19)
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The generalised divergence of the flow becomes

s
n

k=1

1fk

1pk
+ s

2n

k= n+1

1fk

1qk
=−sum 6 1

1q
(M−1C(p, q)q)7−sum 6 1

1q
(M−1K(p, q)p)7

(20)

where sum {} denotes the sum of all elements of the vector. From (20), it can be
shown that the generalised divergence may not only depend on C but also depends
on K when different modes interact with each other. However, if K is a pure
stiffness matrix (i.e., function of p only K(p)), the second term of the right-hand
side of (20) disappears. In general K(p, q) is not a pure stiffness term but includes
damping as well, so one may still say that the generalised divergence represents
the total damping property of the system.

4. NUMERICAL SIMULATIONS USING DIFFERENTIAL EQUATIONS

The algorithms in references [2, 3] are modified to compute the ILE, and the
details of the computational aspects of ILE can be found in [9, 10]. The simulation
is focused on the possibility of detecting changes of damping of a non-linear
(chaotic) mechanical system. Two differential equations are investigated—Duffing
and Van der Pol equations. Simulations are conducted in which the damping
parameter is changed at a certain time. Comparisons are made of changes in the
sum of ILEs and the sum of Lyapunov exponents. These results are also compared
to the sum of SLEs.

 1

The Duffing equation (ẍ1 + cẋ1 − kx1(1− x2
1 )=Acos vt) is considered which

can be expressed in the form (1).

dx1

dt
= x2 = f1(x1, x2, x3)

dx2

dt
=−cx2 + kx1(1− x2

1 )+Acos (x3)= f2(x1, x2, x3)

dx3

dt
=v= f3(x1, x2, x3) (21)

and, the generalised divergence of the flow is equal to the negative of the damping
coefficient which is constant,

s
3

i=1

1fi

1xi
=$1f1

1x1
+

1f2

1x2
+

1f3

1x3%=−c. (22)

This implies that the sum of ILEs is equal to the negative of the damping
coefficient and does not vary with time. The forcing parameter and stiffness
parameter are fixed and two different damping parameters are chosen in the
simulation (Figure 2). The phase portraits for these systems are shown in
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Figure 2. Results of the simulation for the Duffing equation. (left: A=0·4, k=1, v=1, c=0·5,
and right A=0·4, k=1, v=1, c=0·4). (a) Phase portraits. (b) Lyapunov exponents for each case:
both have a positive Lyapunov exponent. (c) ILEs for each case: ILEs are fluctuating caused by the
continuously varying local divergence rate of the nearby trajectories. (d) Sum of ILEs for each case:
they are equal to −0·5 (left-hand side of figure) and −0·4 (right-hand side of the figure), and
represent damping properties, and these show that the rate volume contraction is always the same.
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Figure 2(a), and the positive Lyapunov exponent shows that both systems are
chaotic [Figure 2(b)]. The corresponding ILEs are also shown in Figure 2(c). The
ILEs looks apparently random, however the sum of ILEs is always the same and
equal to the generalised divergence of the flow, and equal to the negative of the
damping coefficient as shown in Figure 2(d). Clearly the sum of Lyapunov
exponents is the same as the sum of ILEs, so it is not shown in the figures. As
a result, it can be said that the sum of ILEs represents the damping property. Now,
we consider the system in which the dampng parameter is 0·5 and is changed to
0·4 at a certain time (at 600 s for this example). The results of this system are shown
in Figure 3. In Figure 3(a), it is shown that the sum of Lyapunov exponents varies
very slowy when the damping parameter is changed, and so it is very difficult to
see whether there is any change at this time. On the other hand, in Figure 3(b),
the sum of ILEs is clearly distinguishable at the right point when the damping
parameter is changed by changing the value from −0·5 to −0·4. This shows how
the sum of ILEs can effectively be used for detecting changes of damping of a
non-linear (chaotic) mechanical system. The sum of SLEs is presented in Figure
3(c), demonstrates the ability to detect changes of damping. The SLE is obtained
by averaging 10 previous forcing periods of ILEs.

Figure 3. Results of the simulation for the Duffing equation (A=0·4, k=1, v=1, the damping
parameter is changed from c=0·5 to c=0·5 at time 600 s. (a) The change of the sum of Lyapunov
exponents is not easily distinguishable. (b) The change of the sum of ILEs is very distinctive. (c)
The change of the sum of SLEs is clearly monitored: this is an averaged version of the sum of ILEs
at every previous 10 forcing period.
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Figure 4. Results of the simulation for the Van der Pol equation (k=1, the damping parameter
is changed from c=1 to c=0·4 at time 600 s). (a) The change of sum of Lyapunov exponents is
not easily distinguishable. (b) The change of sum of ILEs are very distinctive. (c) The change of SLEs
is clearly monitored: this is an averaged version of the sum of ILEs at every previous 10 forcing
period.

 2
As another example an autonomous system, the Van der Pol equation

(ẍ+ c(x2 −1)ẋ+ kx=0) can be expressed in the form of (1)

dx
dt

= y= f1(x, t)

dy
dt

=−c(x2 −1)y− kx= f2(x, y) (23)

(N.B. this system is not chaotic). The generalised divergence of the flow is

s
2

i=1

1f1

1x1
=$1f1

1x1
+

1f2

1x2%=−c(x2 −1). (24)

This shows that the generalised divergence of the flow is continuously changing
with time, i.e., it is the function of the variable x. Since the generalised divergence
of the flow is equal to the sum of ILEs, the sum of ILEs is continuously varying
with time and represents the continuously changing damping property of the
system. On the other hand, the sum of Lyapunov exponents shows the average
behaviour of the damping property of the system, and approaches the negative
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value of the damping coefficient. The sum of SLEs shows the short term averaged
behaviour of the damping property of the system. The stiffness parameter is fixed
and two different damping parameters are chosen in the simulation. Now, consider
the system for which the damping parameter is 1 and is changed to 0·5 at certain
times (at 600 s for this example). The results of this system are shown in Figure 4.
In Figure 4(a), it can be seen that the sum of Lyapunov exponents varies very
slowly when the damping parameter is changed, and so it is very difficult to see
whether there are any changes at this time. On the other hand, in Figure 4(b), the
sum of ILEs is clearly distinguishable at the right point when the damping
parameter is changed. Also the sum of SLEs is presented in 4(c), and clearly
demonstrates the ability to detect changes of damping. From the above two
non-linear systems, it is shown that the ILEs or the SLEs has clear advantage over
the Lyapunov exponents in monitoring the change of the damping property of a
system.

Figure 5. Experimental set-up.
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5. EXPERIMENTAL RESULTS

The mechanical system studied here is a cantilever beam buckled by two
magnets as illustrated in Figure 5. This system is similar to the ‘‘Moon Beam’’ in
reference [11] in principle, and its dynamics are very similar to the Duffing type
oscillator. However, unlike the ‘‘Moon Beam’’, the shaker is used directly on the
cantilever beam and a dash-pot air damper is also introduced to control the
amount of damping in the system. The damper is set to produce two cases by
adjusting the damper plug giving high and low damping. The equations of motion
for single degree of freedom approximation can be written as similar to equation
(21), i.e.,

mẍ+ cẋ− ax+ bx3 +A cos (vt) (25)

and details of equations of motion can be found in references [10, 11]. The
generalised divergence of the flow is equal to the negative of normalised damping
coefficient which is constant.

s
i

1fi

1xi
=−

c
m

. (26)

The parameters are found by using the force-state mapping method [10]. The
effective mass m is 0·77 kg, and the damping parameter c is 8·6 N · s/m for high
damping and 3·0 N · s/m for low damping respectively.

This section demonstrates the use of the sum of ILEs for experimental data.
From a measured time series (displacement signal x for this experiment), we
estimate the ILEs, and then produce the SLEs to find whether there is a significant
change of damping. As mentioned earlier, the sum of ILEs are noisy. Thus, the
sum of SLEs are used by assuming that one can reduce noise by taking a time
average. In order to obtain the Lyapunov exponents from a time series, it is
necessary to reconstruct a phase portrait from a time series [12, 13]. From the
reconstructed phase portrait, one can estimate the Lyapunov exponents. The
various methods of the estimation of Lyapunov exponents can be found in
[3, 4, 14–17], as well as ILEs in [9, 10]. A time series, is first measured and the phase
portrait reconstructed by using the method of delays or by the SVD [12, 13]. From
the reconstructed phase portrait, one can now estimate the SLEs.

Consider now the same two chaotic systems, i.e., one has high damping and the
other has low damping. The reconstructed phase portraits by the SVD of both
systems (high damping and low damping) are shown in Figures 6(a) and (b). Once
the phase portraits are reconstructed, ILEs can be estimated as well as the SLEs.
The sum of SLEs is shown in Figures 6(c) and (d) for the case of high damping
and low damping respectively, and the average values of the sum of SLEs are
−10·1 and −4·5 respectively. These average values are taken from several
segments of the sum of SLEs, and the SLEs are calculated by averaging about 60
previous forcing periods of ILEs. From the sum of SLEs, the estimated damping
parameters by using the effective mass (0·77 kg) are c=7·8 N · s/m for the case
of high damping and c=3·5 N · s/m for the case of low damping. By considering
the numerical errors on the estimation of the ILEs, the results show good
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Figure 6. (a) Pseudo phase portrait by the SVD (high damping). (b) Pseudo phase portrait by the
SVD (low damping). (c) Sum of SLEs (high damping). (d) Sum of SLEs (low damping).

agreement with the results of the force-state mapping method [10]. Now, consider
that the damping of the system is changed at a certain time (at 130 forcing period
in this case). The sum of Lyapunov exponents and the sum of SLEs are shown
in Figure 7(a) and (b) respectively. As shown in Figure 7(a), the sum of Lyapunov
exponents does not reveal the changes due to the nature of estimation of Lyapunov

Figure 7. Damping of the system is changed at about 130 forcing periods. (a) Sum of Lyapunov
exponents (the change is not clear). (b) Sum of SLEs (the change is clear).
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exponents. On the other hand, one can see the distinctive change especially after
about 150 forcing periods from the sum of SLEs as shown in Figure 7(b). The effect
of size of the ‘Window length (orbital periods)’ for calculating the SLEs is not
discussed in this paper. However, it is demonstrated in reference [10] that the smaller
window length gives earlier detection while the larger window length gives
less variation. A smaller window length with reliable estimation of SLEs would be
ideal, however this is mainly depending on the algorithm used for the estimation.
Algorithms for calculating the Lyapunov exponents from a time series are still a
growing subject as are studies of the SLEs (and ILEs).

6. CONCLUDING REMARKS

Lyapunov exponents are very useful for the quantification of chaotic dynamics,
but they represent only the average behaviour of the system, i.e., the Lyapunov
exponent is a measure of exponential growth rate of nearby trajectories on
average. On the other hand, the ILEs describe the instantaneous behaviour of the
system, so when the characteristics of a system are subject to change it may be
possible to monitor these, i.e., the ILE is a temporal measure and varies with time.
As an example of the use of the ILEs and the sum of ILEs mechanical systems
are used to detect any changes of the damping. Both the numerical results and the
experimental results show the possibility of using ILEs in such variable conditions.
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